If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-4r-59=0
a = 1; b = -4; c = -59;
Δ = b2-4ac
Δ = -42-4·1·(-59)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6\sqrt{7}}{2*1}=\frac{4-6\sqrt{7}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6\sqrt{7}}{2*1}=\frac{4+6\sqrt{7}}{2} $
| r5r5r5=50 | | m/4-4=12 | | 7.2x1=9 | | 4^2x+1=3^x-2 | | 16b^2-72b+81=43 | | 8(y+2)=30 | | 3x+27+6x-6=180 | | 8b^2-36b+19=0 | | w/9=12 | | 4)10+10v=170 | | 1/3(6x+9)=2x+12 | | 8(2x-1)=3(16+3x) | | 2(x+5)-7=-3x+15 | | 3x-2x-x-9-2x=0 | | 4x-50=-x+10 | | –4=v/5v= | | 92=1+7r | | 2)-9+n/3=-6 | | 2x-6x+8=-8 | | 4x+1=−4x−1 | | 1/3+0.2b=7/15 | | 19-15x+7=-34 | | 4⋅x+1=−4⋅x−1 | | 21=14=7+x | | 5x-7-2x+3=0 | | 4(a+2)=6(a−2) | | 2(s+2)=4(s−2) | | 5(2s+2)=30 | | 6(u−3)=42 | | 7(s−12)=35 | | 6(g+12)=162 | | 4(e+7)=48 |